
CS 5594: BLOCKCHAIN
TECHNOLOGIES

THANG HOANG, PhD

Spring 2024

DISTRIBUTED SYSTEMS

Outline

Definition and Characteristics

Architecture Models

Distributed Algorithms

2

Definition and Characteristics

Distributed Systems

3

Centralized Systems

All tasks completed by a single entity
Server

! Server is down?

! A lot of users?

üSimple

üEasy to design and implement

üEfficient (with small # users) X

4

Distributed Systems
A group of independent entities communicated with one
another in a coordinated manner

Collaboratively enable a service (computing, data sharing and
storage)

Goal: Address inherent limitations of centralized systems

Robustness

Scalability

Reliability

5

Distributed Systems

Message-based communication

Distributed server

Each entity has separate resource (data,
memory, processor, OS)

Appeared as a single entity

6

Key Characteristics
Transparency

Most important feature

Illusion of a single system

Hide all internal organization, communication details

Uniform interface

Access transparency, location transparency, relocation transparency,
migration transparency, replication transparency, concurrency
transparency, failure transparency, scaling transparency, performance
transparency

7

Key Characteristics
Openness

Heterogeneity

Variety and differences in hardware and software components

Resource Sharing

Resources (hardware, software, data) accessed across multiple
entities

Concurrency

Parallel executions of activities

Reduce latency, increase throughput
8

Key Characteristics
Scalability

Add/remove components to/from the system

Fault Tolerance

Continuous availability

9

Design Goals
High Performance

Low latency, high throughput

Reliability

Preserve correctness and integrity in the presence of faulty/malicious
nodes

Failure detection, self-stabilization

Scalability

Adapt with flexible number of users in the system

10

Design Goals
Consistency

Update consistency, replication consistency, cache
consistency, failure consistency, clock consistency, user
interface consistency

Synchronization between concurrent tasks

Security

Malicious adversaries, secure communication, resource
protection

11

Impossibility Result

CAP Theorem

“Any distributed system cannot achieve Consistency,
Availability and Partition tolerance concurrently.”

Gilbert and Lynch

12

Impossibility Result
Consistency

All nodes see the same data at the same time

Availability
If the node in the system does not fail, it must always respond to the
user’s request.

Partition tolerance
The network will be allowed to lose arbitrarily many messages sent
from one node to another

Choose 2 out of 3
Generally between consistency & availability under partition

13

Distributed System Applications
Distributed systems are everywhere

Mobile systems

Sensor networks
IoT
Ubiquitous and Pervasive computing
WWW
P2P computing

14

Architectural Models

Distributed Systems

15

Client-Server Architecture
Basic model

Two types of node: client (slave) and
server (master)

All tasks accomplished by server

Server is resource-powerful

Client is resource-limited

Asymmetric, partially distributed

Examples: Cloud services (Amazon,
MS, Facebook, Google), IoTs

Client

Internet

16

Client-Server Architecture

Advantage

Easy to maintain security and reliability

Enable a wide range of services

Easy to design and implement

17

Client-Server Architecture
Disadvantage

Central point of failure and compromise

Attacks targeting to server nodes (e.g., DoS, data-breach)

Resource management and administration

Central point of trust

Server has more control and authority in the system

Not so scalable

More clients join, more server demands

18

Peer-to-Peer Architecture
A network of nodes (peers) sharing resources directly with each
other

Symmetric: All nodes are equal participants and play both roles:
provider and consumer of resource

No *server* node

Fully distributed, no centralized data and resource
“The ultimate form of democracy on the Internet”

Examples: blockchains, vehicular network,

file-sharing

19

Peer-to-Peer Architecture
Advantage

Distributed trust

Balanced resource load

High resource capacity and high scalability

More clients, more servers

High fault-tolerance and resiliency against
DoS attacks

Node Node

Node Node

20

Peer-to-Peer Architecture
Disadvantage

Costly backup, high bandwidth consumption

Hard to control

Hard to maintain security and consistency

Vulnerable to network partitions,
byzantine behavior

Unstable

Node Node

Node Node

21

Distributed vs. Decentralized

P2P is distributed, but offers various degrees of
decentralization

Some P2P still need central authorities to make decision
(e.g., network control, resource load) efficiently

Somewhat centralized

Decentralized is NOT all-or-nothing

22

Distributed vs. Decentralized

In fact, no system is purely decentralized, or purely
centralized

Blockchain can be centralized or decentralized under
certain degrees

Depend on the design and application requirements

23

Unstructured P2P network
Easy to build

Loose restriction on overlay structure, data location
and resource distribution

Nodes communicate randomly, perform arbitrary
tasks

High resiliency to churn

Nodes leave and join frequently

Nodes and resources are loosely-coupled

Data navigation issue

High resource (CPU, memory, network) usage

Example: Napster, Gnutella, KaZaA
24

Structured overlay network, restriction on content placement and
resource distribution

Nodes and resources are tightly-coupled, everyone has their own task
Each node is responsible for a specific role in the network
Distributed Hash Table (DHT) for node-task assignment
Simplifying content location

Harder to build

Low resiliency against churn

Structured P2P network

Fox

The red fox
runs across

the ice

The red fox
walks across

the ice

Hash
function

Hash
function

Hash
function

ABCDE213

DEF21234

FFE78682

Peers

25

Hybrid P2P network
Central authorities to help nodes navigate each other

Combine client-server with P2P models

Tend to improve overall performance

Trade-off b/w centralization vs. node
equality

Inherit the best of both worlds

Efficiency in C-S setting, and
decentralization in P2P setting

26

Consensus Mechanism

Distributed Algorithms

27

Consensus Mechanism

Main Motivation: Reliability and Fault-Tolerance in
distributed system

Correct operation in the presence of corrupted nodes

Reach a common agreement in a distributed/
decentralized system

Nodes propose values

All nodes must agree on one of these values

28

Consensus Mechanism

Key to solving many problems in distributed computing

Atomic broadcast

Atomic commit of database transaction

Clock synchronization

Dynamic group membership

29

Consensus Protocol: Definition
A consensus protocol comprises two algorithms:

§ 𝑣! ← Propose(): Each node 𝑛! propose a value 𝑣! and broadcast 𝑣! to the network

§ 𝑣 ← Decide(𝑣", … , 𝑣#): All nodes agree a common value 𝑣 ∈ {𝑣", … , 𝑣#}

§ The protocol terminates when all correct nodes decide on the same value

§ The agreed value cannot be arbitrary: it must come from some correct node
P!

P" P#
v!

v"

v#

1. Propose

Consensus
algorithm

P!

P" P#
d!

d"

d#

2. Decide
30

Consensus Protocol
Example: Find max value among all values

5 10

15 20

P! P"

5 15 10 20

20

15

10

5

20

5

P# P$

31

Consensus Properties

Validity

Value agreed is a value proposed

Agreement

All correct nodes agree on the same value

Integrity

Every correct node decides at most once

32

Consensus Properties

Termination

Every correct node must decide at the end of protocol

Safety

Every correct node must not agree on incorrect value

Liveness

Every correct value must be accepted

33

When Failure Happens
If no failure or malice, easy to reach a
consensus

Individuals broadcast their values to all
nodes
Values received with a pre-defined
timeframe (synchronous)

What if there are failures or malicious
activities in the network?

34

When Failure Happens
Common types of failure

Crash Fault: Node crashed, offline during
communication

Network Fault: Not all pairs of nodes well-
connected (partitioned network), latency (no
notion of global time)

Byzantine Fault: Nodes may be malicious

Achieving consensus in the faulty (yet realistic)
environment is hard

35

Synchronous vs. Asynchronous Systems

Synchronous system
Defined maximum waiting time for message
transmission
Easy to reach a consensus

Asynchronous system
Undefined waiting time
Hard to achieve a consensus

36

Impossibility Results

(Another) Impossibility Results
Byzantine Generals Problem
“Consensus is impossible with a single faulty node”

- Fischer, Lynch and Patterson

Choose 2 out of 3: Safety, Liveness, Fault-Tolerance

37

Impossibility Results
Understand IRs correctly

IRs are more about the model than about the problem

Developed to study systems like distributed databases

Blockchain has different model

Consensus is still useful and achievable

Find right algorithm for specific application domain

38

Consensus Algorithms
Paxos

Majority rule, asynchronous setting
Consistency, fault-tolerance, but may get stuck (2 out of 3 rule)
Byzantine-fault intolerance

Raft
Leader-Follower model
Choose 2 in 3: Safety, Liveness, Fault-Tolerance
Byzantine-fault intolerance
http://thesecretlivesofdata.com/raft/ (animated example)

BFT
Byzantine-fault tolerance

Stay tuned for next lecturers!
39

http://thesecretlivesofdata.com/raft/

Consensus in Public Blockchain
Traditional consensus works on closed environment

Nodes know addresses of their peers
Every node accesses a shared memory

Public blockchain is an open P2P system
Where to keep shared memory in P2P?
Anyone can join and leave the network at anytime
How to enable consensus in an open system?

All nodes must agree on the validity of the Bob’s transaction

Signed by Bob

Pay to pkBob: H ()

Alice is offline

40

Consensus in Public Blockchain
At any given time:

All nodes have a sequence of blocks of transactions
they have reached a consensus on (block of committed transactions)

Each node has a set of outstanding transactions
that need to be validated against block of committed transactions

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Block-based consensus

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
TxValidate

block of committed transactions
outstanding transactions

41

Blockchain Consensus

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Tx
Tx
…
Tx

Consensus
protocol

Tx
Tx
…
Tx

42

Consensus in Public Blockchain
Bitcoin introduces incentive concept for honest actions

Possible as Bitcoin is a digital currency

Embrace randomness

Does away with the notion of a specific end-point

Consensus happens over long-time scales – approx. 1 hour

Blockchain consensus works better in practice than in theory

Theory is catching up

Theory is still very important as It can help predict unforeseen attacks

We will find out in more details later…

43

